NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6

A PROGRAM FOR THE CONVERSION OF PRODUCTIONS IN AN EXTENDED BACK'-ETC(U)
JUL 80 E E MCCOYe T WETMORE

NPS52-80-010

"m 10 82

= §32
= 12 oo
w R "=
| >
=

. it

Mi2s Jlis e

MICROCOPY RESOLUTION TEST CHART

O o T T
v

NPS52-80-010

NAVAL POSTGRADUATE SCHOOL

Monterey, California

ADAO89932

Ty o~
e~

A PROGRAM FOR THE CONVERSION OF
PRODUCTIONS IN AN EXTENDED BACKUS-NAUR-FORM
TO AN EQUIVALENT BACKUS-NAUR-FORM

by

tarl E. McCoy
and
Thomas Wetmore I1I
University of Connecticut

July 1980

> o " Approved for public release; distribution unlim{ited
© \
. i i
YD
[
!
Korn]
fomy A A i
‘ Vi | 231() :l.()) :3 () E; ‘2’

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund Jack R. Borsting
Superintendent Provost

Reproduction of all or part of this research is authorized.

ﬁ/z/%%

EARL E. McCOY
Visiting Assistant Prof 3
Computer Science

e WO e T

THOMAS WETMORE 111
University of Connecticut

Released by:

W. a. TOLLEg

Dean of Research

I e e e e A R e

R iiae oyt

1 fied

SECUMTY CLASMIPICATION OF THIS BPAGE (When Dese Entoved)

—rmorreaer L ORT DOCUMENTATION PAGE e AP B TROC T —
NPS'-BZ-Bﬁ/-Olﬂ ;/ ..D‘n TZ Qﬂlw: e ATaLOG nuneth

5. TYPE OF AEPORT & PEMOD COVERED

g,aoeam FOR THE A%%NVERSION OF BRODUCTIONS IN AN
ENDED BACKUS-NAGR-FORM T0 AN EQUIVALENT ~ /

1 L] ? cxus-m-ro Z # -
T 1:‘7“ e e
: a
/o) Th;mas/ue%ngie,m

. A 1] ECY, Ta
A A.'Q*(Ul!“T uu.:.‘tn =

Naval Postgraduate School
Monterey, California 93940

1Y CONTROLLING OFPICE NANE AND ADORESS N "I’W?ﬂ.
Naval Postgraduate School /!962_ Jul?flsgﬁ e
Monterey, California 93940 - bes -

Unclassified

1CATION. WNGRADING

WEOULE

is. [] JTION STA NT (el hite)
Approved for public release; distribution unlimited

17. DISTMBUTION STATEMENT ro/ Me sterreat entevad in Bioal 30, it Gitterent from Repest)

P ——————————————
10. SUPPLENENTARY NOTES

e —————
19. KEY WOADSE (Continue en reverss o/de i necscsoary and idonttly by block number)
Conversion, Productions, Grammar, Backus-Naur-Form

R

. [70.. ABSTRACT (Continme on roveres o600 If AOSCOOmY End IOENNIly bF LIOOR RUBDGD) et
/-~ This report describes the use of a computer program that converts a grammar'J

production rules from extended Backus-Naur-Form:to another equivalent set of

' production rules in ordinary Backus-Naur-Form suitable for use with the Yet

Another Compiler-Compiler (YACC) system. This permits the language designer to

use the far less bulky EBNF formats, and then to automatically convert to BNF for

use with YACC. A PDP-11 computer system running the UNIX operating system {s

assumed.

.
3 B /
Doty MM e unclusstttes I 0 L0 S I

PO P I e s

ABSTRACT

This report describes the use of a computer program that converts
a grammar's production rules from extended Backus-Naur-Form to another
equivalent set of production rules in ordinary Backus-Naur-Form suitable
for use with the Yet Another Compiler-Compiler (YACC) systém. This permi{ts
the language designer to use tﬁe far less bulky EBNF formats, and then to
automatically convert to BNF for use with YACC. A PDP-~11 computer system

running the UNIX operating system is assumed.

T Introduction

This report describes the use of a computer program that
converts grammar production rules in an Sxtended Backus=Naur-Form
(EBNF) into ord{nary RBackus=-Naur-Form (RNF), EBNF is very con-
venient for a human descrintion of a grammar but is not in a for-
mat acceptable to the Yet Another Compiler-Compiler (YACT) sgystem
{John751. YATC requires the far more bhulky format of ordinary BNF
which is inconvenient for human use. The program whose use is
described here is itself a translater written for the YACC sys-
tem; the BNF it oroduces can be used for the input to YACC to
yield a parse table and other processing for the original EBNF
grammar.

The R8NF to 8MF converter program is stored in thes Naval
Postgraduate School Computer Sciences Laboratory under the name
"ebnftobnf". It is intended to work on a PDP-11 under the UNIX
operating system. This technical report may be accessed on the

INIX system by typing "man ebnftobnf".

IT The ERNF Syntax

The EBNF syntax acceptable as inout to the converter is
presented in this section. An example grammar is also presented.

FBANF makes use of grammar production rules consisting of ter-
minals, nonterminals, and a replacement operator. In the discus-
sion that follows we assume that terminal tokens are in uppercase

letters or strings of letters or are enclosed in single quotes.

The latter is usually reserved for trivial terminals such as

L —————

parentheses, semicolons, etc. Nonterminals are lowercase letters
or strings of letters. The head symhol is the nonterminal "z" as
is the convention in some texthooks. The renlacement operator is
the left arrow, written as (==,

Two sets of metasymbols in ERNF must be removed from the
grammar (by modifying the production rules) to produce an
equivalent BNF grammar. These are the square brackets (...] mean-
ing "zero or one"”, and curly brackets {...} meaning "zero or
more”. As is usual in production rules the vertical bar | means
"or".

Consider the following example in ERNF:
z <-- (A1 C
In 8NF two production rules are needed to exoress an equivalent
grammar:
z2<--C | AC
or
z2 <-=-a'¢C
a' <== null | A
In either case the grammar accepts only the strings “C" or "AC",

Consider the use of the curly brackets to mean “"zero or

more”:

z <== A (A}
This produces all the strings of the form A, AA, AAA, AAAA, anf
so the BNF equivalent must be:

z2 == 2z A | A

or

2 == 2 A

2 {== A
The advantage of using EBNF to describe a grammar is obvious
from these examples; it is unfortunate that YATC will not accept
a grammar in this form. In the next section the exact format of
the ESNF productions required for oprocessing by YACC |is

presented,

II1 Use of the Converter Program

In this section a simple ERNF grammar is modified to the for-
mat acceptable to YACC, and the grammar converted to BNF by the
translator progran,

As an example grammer consider the €following production
rules:

z <-= {b} ;

b <=-= (C] (a] D
Here z and b are nonterminals and A, C, D, and ; are terminals.
How might these productions by modified to a format acceptable to
the translator program?

Several symbols must be replaced in the EBNF used above to
make productions acceptable to YACC, Pirst, the replacément
operator must be a colon (:) instead of a left arrow (<-=).
Secondly, all ¢trivial terminals (ie. parentheses, semicolons,
etc.) must be enclosed in single quotes ('). Thirdly, all other
nonterminals must be explicitly indicated to YACC. Finally, the

head symbol production rule must be the first (top) rule.

The ahove example production rules are manually converted to

yvield to following:

Stoken A C D

1 1
z : {b} ';' ;
b : [C] (A} D ;

As many of the %token statements as needed can be used.
Now consider the execution of the ERNF to BNF translator.
Since it is also a YACC program input it first must be executed:
yacc ebnftobnf
This produces a file in your file space named "y.tab.c.". The
next step 1is to execute the C program in file "y.tab.c" by typ-
ing:
cc y.tah.¢c -ly
This produces a file named "a.out" that can actually translate
EBNF to BNF by the following commanA:
a.out <ebnffile >hnffile
where “"ebnffile” is the EBNF inout file requiring translation;
the ordinary BNF equivalent will result in file "hnffile”. Thoose
whatever names you like for these files. The apnendix shows the

example presented above before and after translation.

IV Using the BNF Equivalent

" In this section the use of the BNF equivalent as input to
another YACC process is described.
The whole purpose of the EBNF to BNF conversion process was

to produce a set of production rules acceptahle to YACH, and thus

B e

be able to build a "compiler™ that can process a "program” in the

grammar to produce either a "yes" or "no" answer as to the
program's syntax correctness or to compile it to some other tar-

v get language. To accomplish this the equivalent BNF grammar must
be emhedded among other statements that indicate the terminal
tokens and a C program (possibly making use of LEX [Leskl).

To do this you must produce the same list of terminals used
in the conversion process (%token, 3%), and prepend it to
the "bnffile”. One VERY IMPORTANT production rule modification
must be accomplished prior to resubmitting the "bnffile". The
conversion process typically revises the order of the production
rules due to the inclusion of new rules with new nonterminals. Re

sure to insert the original head svmhol production rule back at

the very top of the list of rules; YAC” requires this if a

correct parse table is to result. It may have been moved down the
list if it had square or curly brackets in its right hand side. i
Finally append any C program for processing the grammar into a
target lanquage to the list of production rules; separate them by

a %% delimiter line. See the YACT manual for details.

VIT Conclusion

This report describes how to convert a EBMF grammar to BNF
suitahle to YACC. While the program has been tested and found to
work satisfactorily the usual disclaimer as to correctness must

he made. The conversion orocess yields new production rules with

H

t

t
.

new nonternminals. These new nonterminals are Fformed Sy con-

catenating the original nonterminals with prefixes such as "fst.”
and "opt.", and the results for a complicated grammar can get
quite 1long. Use the editor to shorten them up if desired, but

preserve the uniqueness of each nonterminal. Some nonterminals

may contain sequences such as ". ."; these are acceptable to YACC

and so may be left unchanged.

S S < U s A 4 100

BIRINGRAPHY

{John75] Johnson, Stephen T., "YACC - Yet Another Compiler-

Compiler”, Bell Laboratories, Murry dHill, NJ 07974,

[Lesk] Lesk, M. E., and E. Schmidt, "Lex - A Lexical Analyzer

Generator”, Bell Laboratories, Murry 1ill, NJ 07974,

1 = 3 1t STt el o M A i Nl —

- 8 -

APPENDIX

xk The following is an example input file (ebnffile)., ***+

3token A C D

%3
z {b}

bt (el I

>
— -
T v
~

*%**%* The following is an example output file (bnffile). *¥**%
**%*k Note that the first two rules must be interchanged **#*

**%* if it is to be used as part of a YACC input via A
% the a.out Drocess. ok kn
**%* \ote the null production: fst.h.:nulllfst.b. b ; *kkh
fst.b.:
| fst.b. b ;
z:
fst.b. b ';' ;
opt.C.:
V¢ ;
opt.A.:
I A ;
b:

opt.C. opt.A, D :

**k* Pollowing is a listing of the "ebnftobnf" program #%#*#

Ytoken SYMBNL LITERAL
t{3¥define N'JLL 0
struct node
{ ,char symbol(301;
struct node *first;
struct node *next;
char symbhol(30];
struct node *pn;
%}
%%

qrammar:
rule_list;
rule_list: -
rule
| rule_list rule;

rule:
nonterm ':' alternative_ list ‘;'
= { printf ("9s%c0 ™, Sl->symbol, ':');
for (pn = $3; nn != WILL; pn = nn=->next)
[pitems (pn->first);
if (pn=>next == NULL) printf (" ");
else printf ("0] ");
}
printf (";0);
nonterm:
SYMB0L
= { $%$ = ncreate (symbol, NULL, NULL);
}
alternative_list:
alternative
= { $$ = ncreate ("a", $1, NYLL);
}

| alternative_list '|' alternative
= { Jast (S1)->next = ncreate ("a", $3, NULL);
}

alternative:
= % $S = ncreate (" ", NULL, N'YLL);
| element list;
element_list: -
element
| element list element
= % last (S1)=>next = $2;

elament:

e

WP

- 10 =

SYMROL
= { $8$8 = ncreate (symhol, NYLL, NULL);

}
| LITERAL
= ; $S = ncreate (symbol, NJLL, NJLL);

| '{' element list ']’
= { 3% = ncreate ("o", $2, NULL);

if (!lookup ($%))

{ printf ("0);
pitem ($%);
printf ("%c0 ", ':');
pitems ($2);
printf (";");

}
I '{' element_list '}*
= { $$ = ncreate ("1", $2, NULL);

if (tlookup ($%))

{ printf ("0);
pitem (SS$);
print€ ("%cO0 ", ':');
pitem ($S);
printf (" ");
pitems ($2);
print€ (";");

23
tdefine LETTER 'a‘
Ydefine DIGIT '0°

¥y1ex ()

int i, ¢, getCh();
char c;

while ((c = getch()) == * ' || ¢c == '0) || ¢ == *"*);
if (type (c) == LETTRR)
{ 1i=0;
symbol(i++] = ¢;
while ((t = type (¢ = symboll{i++] = getch())) == LETTE
Il t == DIGIT || ¢ == ' _* || c == *.");
ungetch(c);
symbol (=~i} = ' *;
return (SYMBOL);

elgse if (c == ''?)
i =0;
symbol(i++] = ¢; ¢
while ((c = symbol(i++) = getch()) t= ''');
symbol({] = * *;
return (LITERAL);

}

else return (c¢);

}
type (c)
char c¢;
if (c >= 'a’' g c <= '2' || ¢ >= 'A' §& c (&=
if (c >= '0' && ¢ <= '9') return (DIGIT);
return (c);
}

ncreate (string, first, next)
char *string;
struct node *first, *next;

struct node *p;

o = alloc (40);

streny (p=>symhol, string);
p=->first = first;

p=->next = next;

return (p);

}
last (nn)
struct node *np;
{
struct node *p;
for (n = np; p=>next != N'JLL; p = p=>next);
\ return (p);

strcpy (s, t)
char *s, *t;

while (*s++ = *t++);
}
pitems (np)
struct node *np;

struct node *p;
for (p = np; p != NULL; p = p=>next)
{ pitem (p);
printf (" ");
}

nitem (nn)
struct node *no;

'Z') return (LETTER)

if (no=>first == N'ILL) printf ("%$s”, np=>symhol);

else

{ if (strcmp (np=->symhol, “"o") == 0) nrintf ("opt™);
else printf ("fst"); .

[y

plist (no=>first);

}
plist (np)
struct node *np;

{
while (np != NULL)
{ if (nn=>first == N'ILL)
if (*(no=>symhol) == "'') orintf ("._");
else printf (".%s", np=->symbol);
else if (strcmp (no->symbol, "o") == 0)
{ printf ("..opt");
plist (nn=->first);
}
else
{ print€("..1lst");
plist (np=->first);
}
no = np=->next;
}
printf (".");
}

strcmo (s, t)
?har s[]c t[‘:
int i;
i=20;
while (sfi] == t(i])
_ if (s(i++] == ' ') return (0);
return (s{i]l - t([il);

}

char buf(l);
int bufp 0;
?etch)

return ((bufp == 0) ? getchar() : buf([-=bufpl);

ungetch (c)
int c;

buf[bufp++] = ¢;
}

tdefine TRUR 1

3define FTALSE 0

struct node *newnonterm (100];
int nonew 0;

lookuo (np)

struct node *no;

int i;
€or (1 = 0; 1 < nonew; i++)

- 13 =

if (equal (np, newnontermfil))
return (TRUE);
newnonterm(nonew++] = no;
return (FALSE);

} \

equal (x, y)
struct node *x, *y;

{
if (stremp (x=->symbol, y=->symbol) != 0) return (PALSE);

else return (eqlist (x=>first, y=->first));
}

eqlist (x, vy)
struct node *x, *y;

{
while (x != MLL s& y != NILL)
{ if (teqtype (x, y)) return (FALSE);
if (stremp(x=->symhol, y=->symhol) != 0) return (FALSS);
if (x=>first t= N'ILL)
if (lteqlist (x=>first, y=>first)) return (FALSE);
X = x=>next;
Yy = y=>next;
}
if (x != y) return (FALSE);
else return (TRYE);
}

eqtypne (x, Y)
struct node *x, *y;

if (x->first == NULL) return (y->first == NILL);

if (y=>first == NJLL) return (FALSE);

if (*(x=>symbol) == 'g') return (*(y=>symhol) == 'o');
return (*(y=>symbhol) == '1');

2.

3.

5.

-14-
INITIAL DISTRIBUTION LIST

Earl E. McCoy

Department of Computer Science
Code S52My

Naval Postgraduate School
Monterey, California 93940

Thomas Wetmore III

Computer Science Department
University of Connecticut
Connecticut 06105

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

Department of Computer Science
Code 52

Naval Postgraduate School
Monterey, California 93940

s e b o S o 7 AT e -

10

10

30

